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Abstract:   

 

We have developed an historical reconstruction method for estimating past exposure to airborne 

PAH for use in epidemiological studies in which it is required to estimate PAH exposure over long 

periods of time. Our model has been developed specifically for use in a population-based, case-

control study of breast cancer in relation to environmental factors on Long Island, NY, but the 

methodology is generalizable to any geographic area for which suitable environmental data are 

available.  Methods:  We used benzo[a]pyrene as a surrogate for total PAH exposure because 

the early data in the literature were largely limited to BaP.  We modeled traffic PAH exposures 

because prior studies indicated that traffic PAH dominates ambient concentrations in the 

northeastern US.  To estimate traffic emissions over time and space we relied on quantitative 

histories of both tailpipe emissions in μg per vehicle-km previously developed for this study and 

the number of vehicles moving on individual km-road segments (taken from historical county 

traffic maps or tabulations).  An emission model for engines during the cold, warm-up phase was 

also developed.  Standard meteorological dispersion and deposition models were used to 

translate emissions in μg per km per day along the NY metropolitan area road network into 

predicted air concentrations at a study subject’s residence over the years.  For use in model 

validation and calibration, the model predicts residential soil and carpet dust concentrations, as 

well as the contribution of traffic PAH to levels of PAH-DNA adducts in blood.   Results: Individual 

exposures showed strong peaks in the 1970's, strong variation with spatial location (especially 

near traffic intersections), and large variation in cumulative exposure across study subjects 

matched by age of arrival on Long Island.  Exposure opportunity indexes (EOIs) based on the 

geographic model are suitable for estimating an individual woman’s exposure during specific 

calendar years as well as susceptible age periods.  Our geographic modeling approach 

complements exposure markers based on environmental samples and biomarkers of PAH 

damage which tend to reflect recent exposures.  It also complements markers of PAH exposure 

derived from questionnaire data on diet and smoking history.   
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Introduction 

There is evidence that PAH may play a role in the causation of breast cancer (El-

Bayoumy 1992), (Li, Zhang et al. 1999), (Morris and Seifter 1992), but estimation of individual 

PAH exposure is a challenge, especially historical exposure.  Exposure to PAH occurs via several 

routes, including air, water, and food. We present here details of a method of estimation of 

historical exposure from airborne sources that is intended for use in epidemiological studies in 

which geocoded data (latitude and longitude) can be obtained for residential and occupational 

locations of study participants.      

Our work was undertaken as part of the, “Long Island Breast Cancer Study Project” 

(LIBCSP) (Gammon, Neugut et al. 2002), a case/control study involving approximately 3000 

women on Long Island, NY.  The study area is shown in Figure 1.      The present paper describes 

the historical reconstruction method and resulting geographic model, which is a specific example 

of a generic approach described in an earlier paper (Beyea and Hatch 1999).  

Although historical exposure models can provide individualized estimates of high 

specificity, they can involve many parameters known imprecisely or only by inference.  

Consequently, in our development of exposure estimates, we have also stressed model validation 

and calibration, which will be the topic of a subsequent paper.  Of particular interest in our 

methodology is the ability to account for the higher emissions that occur at intersections, known 

to be emission hot spots (Sheu, Lee et al. 1996a; Sheu, Lee et al. 1996b), (Sculley 1989). 

Air exposure appeared to be the best candidate for historical reconstruction of PAH.  As 

summarized in (Eder 1999), studies to date have indicated that environmental exposure to 

airborne PAH can have a larger effect on blood PAH-DNA adduct levels than industrial exposure, 

food or smoking (Eder 1999), in spite of the fact that, on a strict mass-balance basis, the amount 

of PAH entering the body via the air is estimated to be approximately 5-10% on average of the 

dietary contribution (Lioy, Waldman et al. 1988), (Venkataraman and Raymond 1998), (Naumova, 

Eisenreich et al. 2002), (Gammon, Santella et al. 2002). 
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Within the category of PAH air exposure, we focused on traffic emissions because they 

are a major source of both indoor and outdoor exposures to PAH, and often the largest source in 

areas near cities, as has been confirmed in a number of experimental studies (Dubowsky, 

Wallace et al. 1999), (Lim, Harrison et al. 1999), (Harkov, Greenberg et al. 1984), (Dickhut, 

Canuel et al. 2000), (Dunbar, Lin et al. 2001), (Levy, Houseman et al. 2001).  An earlier case-

control study of breast cancer on Long Island reported an elevated (but not statistically 

significant) odds ratio for breast cancer in areas of high traffic density (Lewis-Michl, Melius et al. 

1996).  Elevated risk was also reported in areas with two or more chemical facilities. 

Indoor sources of PAH can also contribute to an individual’s total air exposure, especially 

in episodic events, including smoking (Sakai, Siegmann et al. 2002), (Mitra and Ray 1995), and 

for 3-ringed PAH compounds (Naumova, Eisenreich et al. 2002).  However, studies by Sheldon et 

al. have found outdoor BaP highly correlated with indoor levels in California, contributing more 

than 50% on average to indoor levels (Sheldon, Clayton et al. 1992).  Other studies have found 

similar results:  The contribution of outdoor sources to the heavier PAHs was 63%-80% for 5-7 

ringed compounds in US cities (Naumova, Eisenreich et al. 2002)) and 76% for BaP in Japanese 

cities (Ohura, Amagai et al. 2004)). 

Our estimates of historical exposure complement short-term PAH biomarker 

measurements carried out in the same population using PAH-DNA adducts, which are indicative 

of recent DNA damage (Gammon, Santella et al. 2002).  In this population, an ~50% increase in 

breast cancer risk was noted in relation to PAH-DNA adducts found in peripheral blood.  No trend 

in risk with number of adducts was observed, which could be interpreted most simply as an 

indication that the dose-response for PAH is non-linear.   Alternatively, these findings may 

suggest that individual differences in the response to similar levels of PAH exposure may be 

more relevant in breast carcinogenesis (Gammon, Santella et al. 2002), (Dickey, Santella et al. 

1997).   

 
PAH-DNA adducts reflect only recent exposures; therefore, it is of interest to explore 

PAH exposure in the more distant past, which could be more important for breast carcinogenesis.  
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Because biomarkers are not available that reflect exposures in the distant past, we have turned to 

geographic modeling. 

 

Methods 

We present here a methodology that we have developed for estimating historical 

exposure to traffic-source PAH within the context of a geographic information system.  The 

methodology utilizes a modeling procedure that builds on a variety of traffic-related parameters 

for which substantial data resources exist over a long time period. The ultimate goal is to model 

the exposure for each study participant, based upon a lifetime history of her residential and 

possibly occupational locations. 

 
The methods used in this study to develop estimates of cumulative PAH exposure are 

most similar to those used in an estimate of historical NOX- and SO2-exposure as part of a 

case/control study of lung cancer in Sweden (Bellander, Berglind et al. 2001) and to recent 

modeling work carried out in Portland, Oregon (Cohen, Cook et al. 2005) and earlier in  Denmark 

(Raaschou-Nielsen, Hertel et al. 2000).  The methods are analogous to those developed many 

years ago to predict carbon monoxide concentrations from traffic networks (Johnson, Ludwig et 

al. 1973).  We extend the methodologies in these earlier studies to account for the distinct, 

geospatial exposure patterns produced by emissions at intersections and during engine warm-up 

(cold-engine emissions). Emissions were determined first for warm engines (cruise conditions).  

Next, emissions were adjusted relative to cruise emissions for the cold-engine segment of trips 

and for acceleration and deceleration at traffic intersections. To estimate exposures to residential 

and work locations, we first estimated the distribution of emissions per km along the NY 

metropolitan area road network, which runs through 22 counties in New Jersey, New York State, 

and Connecticut, and then used standard meteorological dispersion and deposition models to 

translate these emissions, in units of μg per day per km, into predicted air concentrations (ng/m3) 

at a study subject’s residence or work location over the years.  For purposes of model validation 

and calibration, we made predictions of quantities closely related to PAH air concentration for 
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which field data could be obtained.  (PAH air-concentration measurements were not available for 

direct model validation and calibration.)  These secondary predictions included carbon monoxide 

concentrations at USEPA monitoring stations, which are dominated by traffic emissions in 

urbanized areas (Chang and Weinstock 1973), (USEPA 2003).  We also made predictions for 

concentrations of PAH in soil and carpet dust at a study subject’s residence, as well as the 

contribution of traffic PAH to levels of PAH-DNA adducts in blood.  Each of these predictions is 

compared with samples collected for the LIBCSP (Gammon, Neugut et al. 2002).  We estimated 

traffic emissions over time and space using quantitative histories of both tailpipe PAH emissions 

per vehicle-km and the number of vehicles moving on individual km-road segments.    

We took B[a]P as a surrogate for PAH, because it is considered a good marker of overall 

PAH exposure (Fertmann, Tesseraux et al. 2002) and the best single marker of PAH 

carcinogenicity (Hannigan, Cass et al. 1998).   Furthermore, B[a]P was the only PAH reported 

consistently in the historical literature.. 

To obtain indoor exposures, estimated outdoor PAH concentrations were multiplied by an 

average building penetration factor of 0.75 (Long, Suh et al. 2001).  The impact of random 

variations about this value for each study subject was studied, as discussed below in the section 

on sensitivity analysis.   

Exposures were computed for 1960, 1970, 1980, 1990 based on the traffic counts or 

number of cold starts for those years.  Exposures for years between 1960 and 1990 were 

obtained by interpolation between the appropriate exposure pair.  Exposures after 1990 were 

obtained by logarithmic extrapolation from 1990.  Exposures before 1960 were obtained by 

logarithmic extrapolation backwards from 1960.    

 

Traffic flow by location, year, and engine 
operating condition 

 

Table 1 lists the data sources and methods that were used to derive the traffic flow on the 

network, broken down by cruise, cold-engine and intersection components.  Data sources for 

6 



flows of warm engines included over 13,000 measurements of “annual average daily traffic 

(AADT)” recorded on paper maps or lists back to the 1960s.  The median distance to the nearest 

traffic count on major roads in Long Island was 0.6 km, with a mean distance of 1.4 km.  (Figure 2 

gives an idea of the density of available measurements.)  

Cold-engine emissions differ from warm-engine emissions both spatially and by time of 

day.  Data sources used to develop traffic flows for cold engines included number of households 

at the census block level and extracts from the travel-diary database of the National Personal 

Transportation Survey (NPTS).  The travel-diary extracts gave us the number of cold starts per 

household per hour of the day for our study area (USDOT 1996).  To determine the fraction of the 

traffic flow that accelerated or decelerated at an intersection, the AADT were corrected to account 

for the fraction of vehicles that had to slow down or stop due to traffic controls.  A simplified 

version of models used to predict peak CO exposures at intersection was used (Nelli, Messina et 

al. 1983). 

Relative emissions by hour of the day for warm-engine emissions were taken as 

proportional to hourly traffic counts, as represented by a typical traffic density curve measured in 

Nassau County (NCOPT 1978).  See Figure 3.  This curve is consistent with other measurements 

(Cardelino 1998).  The time-of-day curve for cold-engine emissions was set equal to the hourly 

frequency of trip starts on Long Island, as extracted from (USDOT 1996).  It is similar to the curve 

for cruise emissions, except for a reduction in cold-starts in the afternoon.  It is also shown in the 

figure. 

Emissions 
 

Emissions per km of roadway per day are a product of traffic count (vehicles per day) and 

tailpipe emissions per vehicle (μg/km).  Determination of the historical variation in tailpipe 

emissions per km has been determined in previous work (Beyea, Hatch et al. 2005) based on  

measurements carried out in tunnels or on individual vehicles run in place on test beds 

(dynamometers).  The results are reproduced in Figure 4.  Emissions were further adjusted to 
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account for non-cruise operating conditions, such as cold-engine operation or acceleration and 

deceleration at traffic intersections.   

Digital street maps are made up of small straight-line segments strung together—some 

500,000 in the road network considered in our study.  For a given engine operating condition, 

emissions per from one of these straight-line road segments was set equal to product of the 

AADT at the segment, the length of the segment, and the appropriate BaP emitted per vehicle-km 

in μg/km. 

Total emissions were written as the sum of cruise, cold-engine, and intersection 

emissions.  For the default model, the coefficients of the various components were estimated 

from the literature as reported in (Beyea, Hatch et al. 2005) and summarized in Table 2.   

As indicated in Table 2, it is appropriate to scale emissions near intersections by a factor 

of ten, but given the paucity of data, the sensitivity of any results to this parameter should be 

explored or measured during model calibration.  In our model, increased emissions are graded 

with distance from the intersection in three steps, with the full scale factor applied within 12.5 

meters and reduced by 1/3rd from 12.5 to 25 meters.  The scale factor was reduced by 2/3rds 

between 25 and 50 meters.  The sensitivity of final results to these relative reduction factors can 

be explored through sensitivity analyses or model calibration.  One such validation and 

optimization effort for this and the model parameters discussed below will be reported in a 

subsequent paper. 

Data on the increase in emissions during cold start is more plentiful than data on 

increases at intersections.  The average scale factor is 8.0.  However, the uncertainty range is 

large, which suggests that this scale factor also should be validated and optimized using field 

measurements.  The default travel time necessary for an engine to warm up was taken as 1 km 

(Ahlvik, Almen et al. 1997).   

Data on seasonal differences in emissions is limited.  As discussed in (Beyea, Hatch et 

al. 2005), we doubt winter tailpipe emissions differ by more than a factor of two in the Long Island 

area.  This is a small difference compared to the historical change over time in emissions shown 

in Figure 4.  Furthermore, the increase would occur during cold starts, so falls under the domain 
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of the cold-start model, which itself has been assigned an average scale factor of 8 in the default 

model.  On an annual basis, accounting for increased emissions during winter cold starts, will 

only change the average cold-start scale factor.  Since the cold-start scale factor has to be varied 

anyway for sensitivity analyses or estimated through model calibration, there is no need to take 

separate account of winter/summer emissions for annual exposure estimates. Study subjects who 

moved during a particular year could have part of their exposure from cold starts miscalculated 

for that year, but we expect this effect to be very small. 

 

Background emissions 

Previous traffic models have used gasoline sales data to estimate background emissions 

or have used a constant value as a surrogate for the cumulative contribution of distant roads 

(Viras, Siskos et al. 1987), (Raaschou-Nielsen, Hertel et al. 2000).  Although we have attempted 

to directly account for traffic emissions within 80 km of our study area, there are more distant 

roads, as well as other sources of PAH emissions, making it prudent to include a background 

term in the model.  We have provided two options for use in model calibration exercises.  In the 

first, a constant term is added to the model prediction, while the second option makes 

background proportional to the exposure calculated from the more distant counties (all but 

Nassau, Suffolk, and Queens counties).  In both approaches, the relative scale of the background 

term can be set by calibration to environmental measurements.   

 
Meteorological dispersion model 

 

The contribution from each point source to air concentration at a downwind receptor 

(Chock 1978) was computed within 100 meters of a road using a highway line-source model 

applied to each of the 500,000, straight-line road segments in the traffic network.   The “Chock” 

highway model was chosen because it gave the best fit, when compared to a suite of models 

tested, to tracer concentrations near the Long Island Expressway as part of a test carried out by 
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the New York Department of Environmental Protection (Sistla, Samson et al. 1979).  R2 values 

ranged from 0.75 to 0.92 for various meteorological conditions and angles to the road. 

Beyond 100 meters, we used a standard, Gaussian puff dispersion model (equivalent to 

the USEPA’s “RAM“ model (Catalano, Turner et al. 1987)).  Table 3 describes the default 

parameters and data sources used in the dispersion model.   

 Total concentration at a study subject’s residence in units of ng/m3 was computed as the 

sum of the contributions from the approximately 500,000 source segments. 

Meteorological models require data on wind speed, direction, and other variables that 

govern the movement of puffs of emitted pollution.  Hourly meteorological data collected at 

Brookhaven National Laboratory in Suffolk County Long Island in 1993 were used for all traffic 

segments and all years.   Complete data were not available for every year of interest in our study 

and it would have been computationally prohibitive to account for year-to-year variations in 

meteorological parameters.  Meteorological data from another year (1990) and location 

(MacArthur airport) were used in sensitivity tests (results discussed below). 

Model Output 
 

The output of the model has been designed to facilitate comparison with environmental 

data to be used in validation and calibration exercises.  In addition to providing air concentrations, 

the model also provides estimates of PAH soil concentrations, based on dry and wet deposition, 

as well as estimates of PAH in carpet dust per m2, based on dry deposition.  Finally, the model 

can be run with all plume depletion processes turned off, which produces output proportional in 

any hour to output from a traffic-generated, carbon monoxide model. 

Application of Model to Study Population:  
 
Geocoding 
 

The model was used to develop exposure estimates for 3064 participants in the Long 

Island Breast Cancer Study Project. A total of 1508 cases and 1556 controls completed the 

interviewer-administered main questionnaire 
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(http://epi.grants.cancer.gov/LIBCSP/projects/Questionnaire.html). Residential addresses were 

obtained from each subject for all homes in which she resided one year or longer in Nassau and 

Suffolk counties.   Occupational addresses were also sought for all jobs held six months or longer 

(Gammon, Neugut et al. 2002).  

Digital street maps were purchased from BLR DATA, Inc. (now part of GDT, Lebanon, 

NH).  Addresses were geocoded using BLR software, with manual cleaning of poorly coded 

addresses.  Two levels of geocoding success were carried forward into the calibration process.  

For the less accurate level, we allowed extrapolation of address number from the start of a dead-

end street.  For the more accurate level, we excluded residences on dead-end streets, which 

allowed interpolation of address numbers between known values on either side of the geocoded 

location.   

Exposure opportunity Index (EOI) 
 
 Residential exposure calculations assume a women is in her residence whenever she is 

not at work, and work exposures assume she is at her workplace for the number of hours per 

week recorded in the interview.   Thus, our calculated exposures are exposure opportunities 

which could be incorporated into toxicological measures that also model breathing rate, metabolic 

activity, and other physiological parameters  

The model can accommodate both residential and workplace exposures by introducing 

assumptions about the relative time spent by a subject in each location, but its accuracy is 

severely limited by the quality of workplace address reporting.  For example, only 10% of work 

addresses given at interview would fully geocode to the street level, although almost all were 

determinable at the city or town level.  Thus, it was not possible in this study to include an 

exposure index computed down to the level of individual work locations.  To see if group level 

exposure markers at the city or town level might prove useful, we prepared a work exposure 

index imputed for each town or city for each month from 1960 to 1997.  Such an index would 

serve at least to differentiate exposures in the more urbanized towns from the more rural villages 

on Long Island.  GIS methods were used to assist in the imputation of work exposures.  
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Hypothetical workplaces were assigned along the major roads in the town or city in which a 

woman worked.  EOI’s were computed for each hypothetical location and averaged to obtain an 

imputed EOI.   

 

Results 

Geocoding success 

The total number of residential locations recorded at interview was 8321.  The maximum 

number of Long Island residences reported by a woman was 17 (median = 2).  Only geocodes to 

the street level were counted as successful, which meant excluding the latitude and longitudes for 

zipcode centroids that GIS programs produce, when more accurate determinations cannot be 

made.  Statistics for the address locations are given in Table 4.  96.4% of locations had a street 

name recorded, but only 79% of the streets had accompanying street numbers, which is a 

requirement for street-level geocoding.  Of the locations with street numbers, 87% geocoded to 

the street level.  The overall geoding success rate for residential addresses by year of residence 

is shown in Figure 5.  The overall success rate was 85% for current addresses, 65% for 1960 

residences, and in the 30 to 40 percent range before 1940.   We note that accuracy in 

determining latitude and longitude of current residences, but not former residences, could be 

improved in future studies by taking to interview hand-held GPS units, which are now quite 

accurate and inexpensive. 

   

A total of 14,668 work addresses were recorded at interview (median 4 per subject).  

Approximately half were missing a street name.  Of the remaining addresses,  only 4532 were in 

the study area and had street names, and many lacked street numbers. 
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Spatial and temporal variation of exposures 

 

In 1996, 50% of the study population lived within 250 meters of one of the major roads on 

the traffic network and 80% lived within 500 meters.  The spatial pattern of emissions from 

intersections is dominated by cross-like structures as shown in Figure 6.  The intersection 

segments shown in the figure extend 100 m from the actual intersection.  

The predicted air concentration along a perpendicular transect across Long Island is 

shown in Figure 7.  Clearly, PAH air exposures are highly variable in space, depending on 

proximity to a major road.  The location of the transect is indicated on the map in Figure 1. 

Year-by-year exposure estimates are shown in Figure 8 for a hypothetical study subject 

to demonstrate several important features of typical exposure profiles.  Yearly exposures change 

dramatically because of shifts in residential locations and because of temporal variations in 

tailpipe emissions. There are also gaps in the exposure sequence due to 1) absence from Long 

Island, 2) residence on Long Island for less that the one year required by the questionnaire 

protocol, or 3)  an address that did not accurately geocode to the street level.   

Sensitivity tests 

Exposure estimates depend on a number of uncertain parameters and assumptions, 

whose impacts on quantities of epidemiological interest can be examined through sensitivity and 

uncertainty analysis.  Uncertainty analysis, which can easily incorporate correlations between 

uncertain parameters, is best addressed after model calibration through Monte Carlo techniques.  

(USEPA 1996).  Sensitivity analysis, which generally looks at changes in model output as one 

parameter is varied at a time (Morgan and Henrion 1990), can be done before calibration.  For 

this report, we perform sensitivity tests on an indicator that reflects averages over the study 

population.  We chose to look at variations in population averages for practical reasons, because 

the model predicts thousands of individual exposure estimates that are correlated in complex 
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ways.  Furthermore, estimates of means, especially differences in means between samples 

representing cases and controls, is an appropriate test of a model that is to be used in an 

epidemiological analysis of exposure and disease.  If the model uncertainty associated with the 

differences in means between hypothetical cases and controls is much greater than the 

corresponding sample-size uncertainty, then the model is unlikely to be very useful.  To 

investigate the changes in averages over study populations as model parameters and 

assumptions were changed, we produced 40 “exemplary data sets”  (O'Brien and Muller 1993), 

(O'Brien 1998), each of which consisted of a randomly selected, split sample of the study 

population.  For each of the replications, we computed population averages for the two split 

populations and then looked at the difference.   The root-mean-square differences of the 40 split 

samples was then computed and standardized to percentage format.  No distinction was made 

between cases and controls.  

Table 5 presents the results of the analysis of the percentage difference in cumulative 

exposure of split samples of women in the study. The percentage differences arising from 

individual model uncertainties are all smaller than the percentage difference that occurs from 

sample size variations alone, which is 5.5%.   

 If we combine the uncertainties presented in Table 2 by taking the square root of the 

sum of squares, the total variation in the group mean exposure amounts to 3.5%, which is less 

than the sample size variability of 5.5%.  Such an estimate of combined uncertainty is not 

completely rigorous, however, because there is some degree of correlation between some of the 

variables (e.g., deposition velocity and penetration rate of fine particles).  However, the total 

model uncertainty would only rise to 8%, assuming all the variables in Table 2 were 100% 

correlated in one direction.  In fact, it can be expected that some variables are uncorrelated and 

some will have compensatory correlations.  For these reasons, it seems unlikely that model 

uncertainty is out of line with the sample size variability.  Model uncertainty should not dominate 

the epidemiologic analysis for sample sizes in our study population, although this conclusion 

needs to be checked with a post-calibration Monte Carlo analysis.   
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Cumulative exposure opportunity  

 
The exposure model produces monthly average exposure estimates, which can be 

summed for various time periods of interest.  First, we compute a Long Island EOI for a woman 

from 1960-1990, the longest period for which we have reliable emissions and traffic pattern 

information.  Next, we compute exposures for two time periods when the breast is thought to be 

particularly susceptible to carcinogenic insult (Colditz 1995), (Colditz and Frazier 1995):  

cumulative exposure to age 20 and, cumulative exposure to age at first birth.  If a woman was 

born or arrived on Long Island before 1960 then the cumulative exposures begin with 1960.  

Otherwise, exposures begin with time of birth or arrival on Long Island.   

 The range in cumulative EOI (CEOI) is substantial.  For women present on Long Island 

for the 30 years from 1960 to 1990, the ratio of maximum to minimum CEOI is 175, assuming 

default model parameters.  The ratio of the 90th percentile CEOI to the 10th percentile CEOI is a 

factor of 4.  The logarithms of the cumulative exposure distributions have an approximate normal 

distribution, with a geometric standard deviation of 1.9.  

 

Missing exposure data before arrival on Long Island. 

 
Missing data can occur for a number of reasons.  Consider first the period before a study 

subject moved to Long Island.  The study design did not include gathering information on 

residences before the year of arrival on Long Island; nor would it have been feasible to estimate 

traffic exposures at the street level throughout the country.   Therefore, we have no way of 

making exposure estimates off Long Island, which means that we are missing all exposures from 

1960 to arrival year for those women who moved to Long Island after 1960.   Since tailpipe 

emissions were significantly higher in the early years all over the country, we could potentially be 

missing significant exposures, if a woman arrived on Long Island after 1980. 
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Thus, our cumulative exposure computations are limited to “years of calculable exposure” 

(YCE).    In comparing calculated exposures to breast cancer risk, it will be important to account 

for YCE.  Data are not available to estimate exposures for women during their off-island period, 

so we have considered two alternatives First, at the suggestion of Sylvan Wallenstein (personal 

communication, 2003), we have computed relative exposures within groups of women arriving 

around the same time on Long Island and then pooled the relative exposures across year-arrived 

groups.   

As an alternative, we have also computed cumulative exposure for a nested set of time 

periods, which begin at different decades, but end with the 1990 exposure stop date.  For these 

computations, we require residence on Long Island to have begun prior to the start date.   In this 

way, we force the years of calculable exposure to be the same for every woman in the individual 

comparisons, although the set of women may change from time period to time period.   

Missing exposure data after arrival on Long Island 
 

Street-level latitude and longitude may be unavailable because  an address is incomplete 

or will not otherwise fully geocode.  Also, there may be no address given for a period of time, 

either because the woman did not live on Long Island during the interval or the residence duration 

did not meet the one-year minimum specified by the study design.  We also did not compute an 

exposure for years when duration for two residences overlapped in time and the conflict could not 

be resolved as a dual use of a summer residence.  Dual residence was only allowed if one of the 

locations could be assigned to a known summer district, e.g., Fire Island, Southold, East 

Hampton.  In those 30 cases, exposures were split between the residences, with the summer 

residence weighted one-third and the other residence two-thirds.  

Table 6 shows how the number of women available for analysis changes for different constraints 

on the percentage of missing data allowed after arrival on Long Island.  Table 7 shows how the 

statistics break down, if we require women to have moved to Long Island before the start year. 

Note that a woman may have an acceptable estimate for one time period, e.g., 1960-1990, but 
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not have one for another time period, e.g., birth to age 20. A scatter plot of the 1960-1990 

cumulative exposures by year of a woman’s arrival on Long Island is shown in Figure 9. 

 

  Discussion 

 

During the historical period for which we have reliable emissions data, as well as for periods 

when a woman may be most susceptible to carcinogenic insult, we have produced individualized 

exposure opportunity estimates for airborne traffic PAH.  Our model accounts for historical 

changes in vehicle emission and traffic flows, and for emissions near intersections and during 

engine warm-up. The individual exposure estimates generated by the model show distinct 

patterns by time and space. Estimated PAH concentrations peak in the 1970s, prior to the 

introduction of catalytic converters.  There is considerable spatial variation in PAH concentrations, 

with peaks near traffic intersections. In addition, estimated cumulative exposure levels vary 

widely, even among subjects matched on age of arrival on Long Island. 

The exposure model has been built to facilitate validation exercises and parameter 

calibrations.  The method can be adapted to other similar locations.  Some limitations should be 

noted, however. 

 
Row housing.  Since the percentage of row housing is small in the study area, we did not 

incorporate “canyon effects” (Raaschou-Nielsen, Hertel et al. 2000) into the modeling.  

Sea breezes.  Although we included the effects of sea breezes indirectly through our use of Long-

Island specific meteorological data, which change in response to sea breezes, we did not 

explicitly model them.  This means we explicitly omitted consideration of the  “thermal internal 

boundary layer” (Luhar and Sawford 1996) that forms over the Island for several hours when the 

wind is blowing from the ocean on warm days.   

Historical changes in road network.  From an analysis of area maps, we found that, with few 

exceptions, all major roads in Nassau and Suffolk Counties were in place by 1960, so we did not 
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include an algorithm to “remove” road sections from the network in backwards extrapolation.  This 

means that in a few cases (e.g., extension of the Long Island Expressway), we will overestimate 

exposures in the early years due to the inclusion of emissions from roads not yet built (phantom 

source terms).  We do not expect the inclusion of a few phantom roads to show any more of an 

impact on the epidemiologic analysis than the negligible impact we found for the omission of 1% 

of the road segments because of lack of traffic data. 

In-vehicle exposures.   We cannot account for individualized exposure to traffic PAH while driving 

(Ott, Switzer et al. 1994), (Brice and Roesler 1966), because no questions directly relevant to in-

vehicle modeling were included in the study questionnaire.   From examination of the 

concentrations predicted along the transect crossing Long Island (Figure 7), as well as a 

comparable curve for Suffolk county not shown, we conclude that peak exposures on roads were 

generally ten times higher than average residential exposures.  Thus, assuming 1 hour of vehicle 

traffic per 24-hour day, exposures while driving would contribute 10/24ths of average model 

exposures, leading us to conclude that travel-time exposures did not dominate total exposure for 

the overwhelming number of study subjects.  On the other hand, the omission of in-vehicle 

exposure may be significant for women living in locations with very low exposure from general 

traffic.  If so, the omission would add some non-linearity between our exposure estimates and the 

values that would have been computed with a model capable of tracking individualized, in-vehicle 

exposures. 

Inability to model work exposures.  As noted earlier,   very few women provided work address 

information sufficient to allow street-level geocoding.  Imputation to the town or city level was 

necessary to generate cumulative exposure estimates.  In the future, questionnaires could be 

designed so that the company name of the employer is requested, which would allow 

independent assignment of the work location.   

 

Omission of other PAH air exposures.   Our study is premised on the experimental finding that 

traffic exposures are a dominant source of airborne PAH, both in and outdoors.  We did not 

consider a number of additional sources of potential PAH exposure, such as emissions from 
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space-heating furnaces and indoor sources (e.g., PAH in airborne combustion products of 

cigarette smoke and cooking)  Data on home heating sources would have to be obtained through 

interviews or from records.    

 

Limitations due to incomplete exposure data. When computing cumulative EOIs for a woman, 

multiple addresses are often needed, some going back quite far, which means that there is a 

significant chance that a woman may have at least one exposure gap, particularly if the starting 

year of the cumulative exposure is set earlier than 1960.  Success rate for a cumulative EOI 

depends on the start year and the tolerance level that is set for missing exposures. This makes it 

especially problematic to take exposure back to childhood for older women.  The choice of start 

year is a tradeoff between increasing the exposure duration and decreasing the precision of the 

exposure estimates.  Our confidence in both the historical traffic flow rate and the tailpipe 

emission rate drops off dramatically prior to 1960.  The geocoding success rate also falls off 

sharply for residences occupied before 1960.  For these reasons, we chose1960 as our starting 

exposure year.   

Conclusion   

Although relatively new in environmental epidemiology, geographic exposure modeling 

combined with historical reconstruction has been used in a number of epidemiological studies of 

large populations and to assess exposure to environmental hazards  (Bellander, Berglind et al. 

2001) , (Ward, Nuckols et al. 2000), (Gunier, Harnly et al. 2001), (Brody, Vorhees et al. 2002), 

(Stellman, Stellman et al. 2003), (Reynolds, Von Behren et al. 2003).   When exposures may 

have occurred in wide geographical areas over a period of many years, geographic modeling 

methods may be the only practical exposure methodology available.  Nevertheless, confidence in 

modeling approaches will be strengthened by careful attention to methods.  Whenever possible, 

predictions should be made of quantities related to a model’s exposure index that can be 

validated against measurable data.  Reconstruction of exposures from traffic provides 

opportunities for improving GIS methods, because there is a relative abundance of information 

available for both constructing EOIs and validating them.   
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Table 1. Data and methods used to estimate numbers of vehicles on the road by location, year, 

and operating condition. 
 

 Warm engines Cold engines 
Quantity of interest Cruise  Acceleration/ 

deceleration 
Cruise Acceleration/ 

deceleration 
Average vehicles 
per day (AADT).a) 

Traffic counts from 
state and county 
traffic departments 
since the mid-
1960s.b) 

Same as cruise 
AADT 
 

Trips per 
household per 
day times 
number of 
households 
per census 
block.c) 

Same as cold 
cruise 

AADT for missing 
years 

Interpolation & 
extrapolation.d) 

Same Scaling by 
population and 
travel trends.e) 

Same 

Emission spatial 
restrictions 

Within 80 km of 
Long Island 
boundaries.   

Within 50 m of 
intersections.f)  

Within 1-km of 
each census 
block centroid. 

Same as cold 
cruise; also 
within 50 m of 
intersections. f) 

% of vehicles 
slowed down or 
stopped at 
intersections 

 Simple function 
of traffic flow.g) 

 Same as for 
warm conditions 
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a) Annual average daily traffic counts (AADT) for locations without measurements were set 
equal to the nearest measured value on the same road for the same year, provided there 
was a measurement within 10 km.   Sensitivity tests indicated that no significant 
difference resulted in the exposure distribution down to a 2-km distance cutoff.  On Long 
Island, the median distance to the nearest traffic count on major roads was 0.6 km, with a 
mean distance of 1.4 km.   

b) Paper maps with numerical counts marked next to roads were available for Nassau and 
Suffolk counties from 1964-1991 (SDPW 1965-1995), (NDPW 1965-1995).  The paper 
maps were compared section by section with GIS maps displayed on a laptop screen.  
Corresponding locations of a count along a road were estimated by eye and marked with 
a cursor click, which caused the latitude and longitude to be stored in a table and a 
screen form to pop up allowing entry of the numerical count value read from the map.  
Programming was done in MapBasic.  Once the traffic count value was entered, it was 
backchecked against the original value on the paper map.  Data from the 1990s for the 
entire 22-county, NY Metropolitan area (NYMSA) were purchased from (BLR 1997).  
Recent traffic count data for Queens County were obtained from the City of New York 
(NYCDOT 1999b).  Historical traffic growth rates for the outer counties came from data 
on state roads (CONNDOT 1991), (NYDOT 1991), (NJDOT 2002).  Historical data for 
New York City were obtained by backwards scaling using measured traffic flows on New 
York City bridges (NYCDOT 1999a; NYCDOT 1999c) and between boroughs. 

c) Trips were allocated to major roads within one km of the centroid of the census block, 
using a standard inverse distance square law weighting (Ortuzar and Willumsen 1995).  
Trips per household per day for Long Island and the NYMSA were extracted from the 
database available through (USDOT 1996).  Household numbers came from 
(Census_Bureau 1993) 

d) If multiple-year data were available at a point within a ten-year period, using the method 
in the first footnote, then logarithmic interpolation or extrapolation was used to fill in traffic 
count values for a missing year.  Otherwise, countywide growth rates were used, with the 
exception of Suffolk County where separate rates were used for the eastern and western 
parts of the county (Palmer 1999).  County growth rates were obtained by analyzing the 
historical values of traffic counts on state roads.   In this way, AADT were assigned to 
99% of the street locations. 

e) Numbers of households were scaled by census tract figures from 1960-2000 (Geolytics 
2002).  Trips per household per day were scaled by historical values of trips per person 
per day (Hu and Young 1992). 

f) The intersection distance was broken down into 3 sections, 50, 25, and 12.5 meters, 
allowing a graded rate of emissions.  In the default model, the relative emissions were 
taken in the proportion of 1:2:3. 

g) For unequal traffic counts on intersecting roads, we made the relative stopping fraction a 
function of the relative traffic counts.  Even for very high volume roads, we assumed that 
10% of the traffic was exiting or entering, and therefore accelerating or decelerating.  This 
approach is a simplification of more elaborate models used to predict peak CO exposures 
at intersections (Nelli, Messina et al. 1983). 
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Table 2.  Summary of BaP vehicle emission modeling parameters abstracted from the 
literature (default values) 
Ratio of cold cycle to warm cycle 8 ± factor of 4 
Distance traveled before engine warms up 1-km 
Ratio of winter to summer emissions < 2 
Ratio of emissions at intersections to cruise 
emissions 

10 

Duration of acceleration/deceleration 
period at intersections 

Undetermined 
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Table 3.  Default meteorological dispersion model 
 
Quantity of interest Data source Comment Options for sensitivity 

analysis 
< 100 m of road Chock dispersion 

model (Chock 1978).a) 
Models merged at 100 
m.b) 

 

> 100 m of road Gaussian plume 
model (Viegele and 
Head 1978). 

Briggs dispersion 
parameters used. 
(Catalano, Turner et 
al. 1987).b) 

Rural dispersion 
parameters 

Meteorological data 
for wind speed and 
direction.  

1993 values from 
Brookhaven National 
Labs meterological 
station (BNL) 

 1990 BNL values; 
1990 and 1993 data 
from MacArthur 
airport(NCDC 1999a). 

Mixing layer 1993 values from 
(NCDC 1999b).c) 

 1990 values. 

Rain washout Hourly mm of rainfall 
(BNL). 

Took standard 
function of rainfall rate 
(Ramsdell, Simonen 
et al. 1994). 

Scale factor 

Photo-decay Hourly pyranometer 
readings from (BNL). 

Proportional to the 
amount of sunlight, 
adjusted to give an 
average 6-hour decay 
rate.d) 
 

Scale factor.  1990 
pyranometer 
readings. 

Deposition velocity (NCRP 1993) Default value = 0.003 
m/s 

Scale factor 

a) Computationally, the Chock model was converted to a gaussian plume formulation by 
fitting the Chock predictions to spatially dependent, gaussian plume dispersion 
parameters applied to puffs emitted along the roadway. 

b) At 100 meters from the road, the puffs were allowed to continue to expand using 
standard dispersion parameters, whose values for the default model were taken from 
1993 Brookhaven Laboratory measurements (BNL).  Values measured at Brookhaven in 
1990 and values derived using PCRammet from data collected at MacArthur airport in 
1990 and 1993 were used for sensitivity studies  (USEPA 1999), (NCDC 1999a). 

c) Raw data converted to hourly mixing heights using the program, PCRammet (USEPA 
1999). 

d) The default value was chosen to produce a mean BaP lifetime during daylight of 6 hours, 
a value within the wide range given in the literature (Huang, Dixon et al. 1995), (Fan, 
Chen et al. 1995). 
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Table 4.  Statistics of residential address information (Nassau and Suffolk Counties) recorded at 
interview 
 
 Number of locations Percentage 

Total residential locations 8321 100 

Locations without streets 300 3.6 

Locations with streets, but no 

numbers 

1715 21 

Locations with street numbers 6306 76 

Locations geocoded to street 

level 

5501 66 (87a) 

a) Percentage of locations with street numbers that geocoded successfully to the street level. 
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Table 5.  Sensitivity of test statistic to variations in model.   
 

Test statistica) category Residential Exposure  
Baseline (Standard error of difference from 
sample size limitations) b 

5.5% 

Different deposition velocities 1.9% 
Meteorologic data for a different year 1.8% 
Include washout from precipitation 0.2% 
Exclude contribution from distant counties 0.9% 
Variable penetration rate of fine particlesc) 1.1%  
No Intersections 1.4% 
Different PAH source term 0.8% 
  
Root-mean-square combination of model 
uncertaintiesd 

3.5% 

a) Let M1 and M2 be the exposure means for a split sample. The test statistic is 
simply the difference in means divided by the average = (M1-M2)/( (M1+M2)/2 
).  This quantity varies for different splits of the study population and for 
different parameter choices in the model.  The root-mean-square average of 
this quantity for many splits of the study sample is presented in the table 
along side the parameter varied 

b) Each split sample contains approximately 1500 women.  The percentage 
differences presented in the table are rms averages over the results of 40 
different splits, all of which were selected randomly. 

c) This is a variability, not an uncertainty. 
d) Baseline not included.   
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Table 6. Number of women in study population available for analysis, regardless of when they 
moved to Long Island. 
 
 
 
 
Exposure category and constraint on 
percentage of missing address informationa 

Number 
of 
women  

Women 
excluded (< 5 
yrs of exposure 
during period) 

Net 
total 

Cumulative 1960-1990b    
Address info for 100% of period 1452 89 1363 
Address info for 80% or more of period 1932 96 1836 
Address info for 75% or more of period 2026 96 1930 
Address info for 50% or more of period 2283 100 2183 
Any address info for period 2534 102 2432 
    
Dose under age 20c    
Address info for 100% of period 371 100 271 
Address info for 80% or more of period 470 105 365 
Address info for 75% or more of period 484 108 376 
Address info for 50% or more of period 530 119 411 
Any address info for period 567 129 438 
    
Dose before Age first birthc    
Address info for 100% of period 328 192 136 
Address info for 80% or more of period 482 204 278 
Address info for 75% or more of period 514 207 307 
Address info for 50% or more of period 628 226 402 
Any address info for period 735 240 495 

a) A complete address is one for which street-level geocoding occurs. 
b) If a woman arrives after 1960, the start period is her arrival date.   
c) If a woman was born before 1960, the start period is either 1960 or her 

arrival date, which ever is most recent 
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Table 7. Number of participants who arrived on Long Island before the start of various time 
periods, as a function of completeness of their address information. 
 
 Time period 
 1960- 

1990 
1965-1990 1970- 

1990 
1975-1990 1980-  

1990 
1985-  
1990 

 
Completeness 
of address 
informationa) 

      

100% of period 569 831 1122 1476 1749 1976 
80% or more of 
period 

832 1122 1402 1709 1920 2117 

75% or more of 
period 

879 1164 1454 1757 1970 2142 

50% or more of 
period 

1016 1347 1628 1921 2102 2248 

Any address 
info for period 

1160 1506 1787 2066 2220 2309 

a) Percentage of time for which a street-level latitude and longitude is available.  A complete 
address is one for which street-level geocoding occurs. 
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(Figures are in a separate PDF file , 4 mb in size.) 
 
Figure Captions. 
 

Figure 1.  LIBCSP study area showing the major roads within an 80-km distance of Long Island 

from which vehicle emissions are tracked in this study.  Study participants were drawn 

from the shaded area, which is 150-km in length.  The straight line crossing Long Island 

defines the location of predicted air concentrations shown in Figure 7. 

Figure 2.  Traffic-count measurement density in a 25-km wide, section of study area.  Each 

symbol represents a measurement location. 

Figure 3.  Relative vehicle emissions for warm-engine and cold-engine conditions by hour of day.   

Warm-engine data collected at a typical location in Nassau County in 1977.  Cold-engine 

data averaged over Nassau and Suffolk, based on 1995 traffic diaries.  See text. 

 

Figure 4.  Historical tailpipe emissions of PAH reconstructed for this study 

 

Figure 5. Geocoding success to high accuracy by year (5 year average). 

 

 

Figure 6.  Segments of roads within 100 meters of major intersections where PAH emissions are 

increased.  Shown as cross-like structures, darkened for visual emphasis, within a 4-km 

by 6-km wide map selection from Nassau County, Long Island, New York.   

 

Figure 7.  Predicted PAH exposures along a transect across Long Island.  See Figure 1 for the 

location of the transect. 

 

Figure 8.  Yearly exposure to traffic PAH for hypothetical subject.  Relative units. 

 
Figure 9.  Exposure opportunity index by year of arrival on Long Island.  Data shown for 2534 
women with geocodable addresses, both cases and controls, who were participants in the Long 
Island Breast Cancer Study Project.Figure 1 
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LIBCSP study area showing the major roads within an 80-km distance of Long Island from which 

vehicle emissions are tracked in this study.  Study participants were drawn from the 

shaded area, which is 150-km in length.  The straight line crossing Long Island defines 

the location of predicted air concentrations shown in Figure 7. 

 

Transect 
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Figure 2 
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Traffic-count measurement density in a 25-km wide, section of study area.  Each symbol 

represents a measurement location. 
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~5,000 counts from 1962-1998 
in entire study area,  

~8,000 more in rest of NYMSA 
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 Figure 3 
 
 
 
Relative vehicle emissions for warm-engine and cold-engine conditions by hour of day.   
Warm-engine data collected at a typical location in Nassau County in 1977.  Cold-engine 
data averaged over Nassau and Suffolk, based on 1995 traffic diaries.  See text. 
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Figure 4.   
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.  Historical tailpipe emissions of PAH reconstructed for this study 
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Geocoding success to high accuracy by year (5 year average). 
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Figure 6.   
 

 
 
 
 
 
 
 

 
 
 
 
Segments of roads within 100 meters of major intersections where PAH emissions are increased.  
Shown as cross-like structures, darkened for visual emphasis, within a 4-km by 6-km wide map 
selection from Nassau County, Long Island, New York

40 



Figure 7.   
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Predicted PAH exposures along a transect across Long Island.  See Figure 1 for the 
location of the transect.
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Figure 8.   
 

early exposure to traffic PAH for hypothetical subject.  Relative units 
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Figure 9. 
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Exposure opportunity index by year of arrival on Long Island.  Data shown for 2534 women with 
geocodable addresses, both cases and controls, who were participants in the Long Island Breast 
Cancer Study Project. 
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